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ABSTRACT
Hedonic modeling is used to measure the product price be-
havior overall in high-tech markets. In a previous work, we
showed the opportunity to extend the simple regression to
a state space model evaluating hedonic prices from product
prices. We created and tested an online estimation algo-
rithm for those values. In that way, we can study time se-
ries of implicit prices for individual components of a range of
products. In this paper, we implement and compare the he-
donic model forecast performances respect to standard au-
toregressive models, univariate and multivariate. We find
that hedonic values not only give extra information about
supply market, but they can improve univariate predictions
and in, certain periods, also multivariate ones. We show the
correctness of algorithm using online version of it. An agent
may predict prices for different products sharing a set of
component, by taking into account the structure of produc-
tion process. An application in a multi-agent supply chain
simulation confirms the goodness of algorithm to be imple-
mented in a future framework for online price analysis and
prediction.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Type of Sys-
tems—decision support, logistics; F.2.1 [Analysis of Al-
gorithm and Problem Complexity]: Numerical Algo-
rithms and Problems—computation on matrices, linear sys-
tems; G.3 [Mathematics of Computing]: Probability
and Statistics—correlation and regression analysis, time se-
ries analysis

General Terms
Algorithms, Measurement, Performance

Keywords
Agent-based modeling, dynamic pricing, forecasting struc-
tural models, hedonic price models, market modeling, olig-
opolistic competition, state-space model, trading agent com-
petition

1. INTRODUCTION
Differentiated products in heterogeneous consumer markets
often reveal similar price patterns, which to some extent

can be explained by trends and volatility in shared product
components. The observed dependencies among the prices
of these products may provide an important source of infor-
mation for vendors to improve the efficiency of their price
forecasts, but also to infer about customers’ valuations of
separate product features. The latter insight can be used
by manufacturers to align marketing operations, to adjust
their production toward product varieties with highly valued
components, and to steer procurement toward economically
attractive components. An example are computers, which
are offered in different product varieties based on similar,
sometimes identical components, in heterogeneous consumer
markets. Similar examples can be found in other high-tech
markets, like mobile telephones and television sets, but also
in markets for food products that share common inputs, like
tomatoes or grain.
Despite these dependencies, applications of price forecast
methods tend to focus on single products thus neglecting
a potential source of information and foregoing potentially
valuable insights into the valuation of components. The
aim of this paper is to demonstrate the potential of co-
dependencies among prices of differentiated products in fore-
casting using multivariate prediction methods. Then, an-
other contribution is the comparison of the forecast results
of a multivariate hedonic model with those obtained with
classical vector- and univariate autoregressive models (VAR
and AR). Hedonic models are specified more restrictive than
VAR models, but they have as an advantage, that insights
into component valuation are obtained. The more general
VAR models, on the other hand, involve rapidly increas-
ing numbers of parameters to estimate when the number of
products analyzed increases. In this way, we validate the he-
donic online algorithm that, in few seconds, estimates series
of prices about components, with the same performances of
the standard models. The latter are proverbially not time
expensive, a characteristic such important in electronic com-
merce.
In the last decades, economic researches described the ef-
fects of product variety but not in term of the components
included in the products [21]. In other fields as inventory
management, the problem is analyzed from the optimiza-
tion of logistic practices for parts and products [32, 26]. For
instance, when the manufacturer finishes a component in
his inventory, he is faced with two choices: to buy again the
same component or to move the production over another
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Figure 1: Forecasting agent architecture in a sup-
ply chain 2-tier for semi-durable goods. Full arrows
correspond to flow of goods. Dotted gray arrows
represent flows of information.

product which does not include that component. We focus
on the value of the parts contained in the product prices, the
hedonic value or implicit price for a component. We consider
a multi-agent supply chain environment because the impor-
tance of quick forecast models based on an agent framework
is much more important in these days. Furthermore, our
algorithm is applicable to quick and versatile markets.
Nowadays, we forecast product prices in supply chain of
semi-durable goods using exponential smoothing [16], ma-
chine learning [19], switching regimes [20], but no one re-
search include hedonic values, while procurement market
information could be useful. Until now, the advantages of
a better forecast model can be restricted in finance and in
commodity markets. Today the number of customers who
buy via computer their products is increasing. When many
suppliers, manufacturers, and customers will negotiate in
electronic market, a forecast agent based on dual market in-
formation should be incorporate in a company framework.
Since hedonic values are a direct consequence of assembling
component design from the point of view of the customers,
we believe that they are the latent variables of procurement
and customer market. They move the forecast model in
a multivariate direction, and it is not so usual in product
prices forecasts. The algorithm to estimate multivariate he-
donic prices for components (as described in [31]) is based on
the Kalman filter technique [25, 13]. Hedonic value for each
component can be used as input in an univariate model as
extra information or included in a multivariate model based
on the vector of hedonic variables. Usually standard forecast
models consist in univariate and multivariate autoregressive
models. Differently, we can dynamically forecast the selling
prices of a range of product varieties in terms of the devel-
opment of the implicit prices of shared components. After a
multiple estimation of possible forecast values, we can mea-
sure their performances and to choose the best model to use
in that period. For instance, we can follow the root mean
square error performances on line for choosing which model
should be used in the next period. Otherwise we can test a
weight average of our forecast values.
In Figure 1 we see the flows of information and goods be-
tween both of our dynamic supply chain markets. In fact,
manufacturer is often an intermediary not only of goods but
also of information about the value of components. The
latter information is usually hidden to the customer which

evaluates it through the price of the end product. In some
cases components may be also sold independently by sup-
pliers on the consumer market (that is the case of several
computer parts).
Data for the model application come from a multi agent
simulation of a computer supply chain, the Trading Agent
Competition for Supply Chain Management TAC SCM (see
[7] for all the details of the simulation). Multi-agent games
are an advantage for researcher who wants to test any pre-
diction model, like in our case. Historical database of TAC
SCM games contains all the information about supply chain
variables (component prices, product prices, delivery prices,
inventoried quantities, . . . ) which changes game by game ac-
cording to different agent strategies.
The paper is structured as follows. Section 2 positions our
work in the similar literature. Section 3 presents the basic
model specification and delineates the algorithm to estimate
the implicit component prices. Section 4 discusses the data
and application methodology. Section 5 concludes the paper
with suggestions for further research.

2. LITERATURE REVIEW
Autoregressive integrated moving average (ARIMA), expo-
nential smoothing and spectral domain, are only a small part
of the numerous models that econometrical discipline offers
[13, 4]. They are based on the assumption that previous
values are informative about the future ones. If we consider
multiple time series of product prices, vector autoregressive
models (VAR) include correlation between products. Nor-
mally, we can use those models to forecast prices based on
their performances. In this case, we have multiple choices
to select and the best way is to study their previous per-
formance and assume that it will remain the same in the
future period. Agent can select and test one model observ-
ing online performances. Output forecasts depend on the
model used in that period and not only on the estimation
of the parameters. There are many methods to use multi-
ple forecasts [1, 10]. Today, with the growth of innovative
models as regime switching, and threshold autoregressive,
prediction techniques take advantages of multiple estimates.
State space model representation may help researcher to ex-
tract hedonic evaluations from time series. In [27] there are
several examples of applications in supply chain manage-
ment of each of those techniques applied in such contexts.
Both [13] and [15] are a good introduction to state space
models used to extract signals from a time series. When
we want to extract information about components, factors,
or latent variables, we may apply those methodologies, but
they are still poorly extended to dynamic analysis of real
components [15]. One of the few models including dynamic
hedonic variables was the Dynamic Multiple Indicator Mul-
tiple Cause model (DYMIMIC) of Engle and Watson [11].
The latter was apply to extract information for interest rate
in the housing market.
Dynamic forecast multi-agent systems technology has been
tested in e-commerce and e-supply chains [20]. In such con-
text, agents need quick instruments to improve strategies
and to coordinate logistic operations. There is a trade off be-
tween complexity of the models and time computations. For
example, if we assume structural changes in the parameters,
regime switching models include an underlying latent vari-
able which affects prices: the regime state variable. As our
model, the estimation of underlying state variables based on



historical data has to be quick and robust. With the growth
of computer technology, we expect in the future an increase
of forecast skills in price prediction [19].
A common approach in economics dealing with the valuation
of product components by customers is the use of hedonic
models, rooted in household production theory [22, 23] to
evaluate consumer demand for heterogeneous products like
cars, computers, apparel or washing machines. The hedonic
technique is based on the assumption that quality differences
between goods can be attributed to measurable character-
istics, such as components and other product features. The
shadow or implicit prices of these product characteristics
(components) are estimated by regressing product selling
prices on a relevant set of product characteristics in a sample
of product varieties [31]. The hedonic technique has been ap-
plied to construct quality-corrected consumer price indices
for many products [30, 14]. Overall in the high technology
market hedonic regression is frequently used since there is a
link between characteristic and components [2, 24, 12]. Fur-
thermore, it is usually implemented for residential housing
and real estate analysis [6, 5]; but no one really identified
the importance of a dynamic estimation of hedonic values.
The advantages of the application in TAC SCM (the multi-
agent simulation in supply chain context) are twofold: first,
it provides a battery of games to test the hedonic tech-
nique where agents behaves following several strategies, as
in the real world; second, component structure of comput-
ers is perhaps the perfect application of hedonic algorithm,
since these goods are evaluated principally for their compo-
nents stronger than other goods. Our considerations about
results can be compared and deepen with previous works of
the same kind [8]. We design and implement tools for intel-
ligent real-time decision-making for such smart markets as
described in [3].

3. METHODOLOGY
In this section we list the fundamental relations that are
essential to estimate implicit prices and to compare per-
formances of univariate and multivariate forecast models
in e-commerce. Subsections 3.1 and 3.2 focus on the he-
donic evaluation and the proper algorithm for multivariate
case. The result is the Dynamic Multivariate Hedonic Model
(DHMM) which considers all the hedonic variables at the
same time. Subsections 3.3 and 3.4 show respectively the
univariate and multivariate autoregressive relations. In sub-
section 3.5 we include individual hedonic values in a univari-
ate autoregressive model. In this way, a multiple autoregres-
sive model (MAR) is obtained, where hedonic information is
the added value. Last part of this section is dedicated to the
list of performance indexes we used to validate our model.

3.1 Multivariate hedonic model
Our knowledge of the market is collected in the vector of
prices for the n end products. We call yi,t the price for the
product i recorded on the market at time t. We suppose
that each period generates a single observed product price
for each product. If we have more than one price for the
same product in a single period we may consider the mean
value of these prices. If we have some missing values we
can substitute them via an estimation method. We obtain a
n×T matrix, y, containing the information of the consumer
market, where T is the last period of observation of the
market. Each row of the matrix y is the generic vector

of prices for the end product i during the whole period,
that we call yi. Each column of the matrix y is the generic
vector of prices for all end products at time t, and we call it
yt. We start displaying the relationship between prices and
characteristics. We refer to as the hedonic function because
is a mapping from the end products to implicit prices for
components. Our hedonic function is given by:

yt = Dzt + vt, (1)

where vt represents the stochastic component due to error in
measuring; we assume vt normally distributed with 0 mean
and matrix of variance-covariance Σv. As for the character-
istic price index formulation [29] also in our hedonic model
one of the most important motivation is to consider multi-
collinearity. According to (1) products are basically bundles
of branded components, and the realized product prices can
therefore be interpreted as an aggregate of implicit compo-
nent prices. Moreover, we introduced a n×m design matrix
D, which maps the m component prices to the n product
prices. A design matrix has {0, 1} elements and it can be
partitioned in submatrices with one element equal to 1 for
each row, and with every column containing at least one non
zero element. As each product is composed of a fixed set of
components, this D is non-stochastic.
The basic idea of the multivariate hedonic model is that
observed product prices vary with customer valuations of
the constituting parts, and that these implicit component
valuations evolve over time. Below, we introduce an m× 1-
vector a latent factor prices zt, with m ≤ n. If the factors
correspond with product components, then zt contains the
implicit component prices. We suppose the implicit compo-
nent prices evolve in an autocorrelated, markovian, possibly
non-stationary way over time:

zt = Φzt−1 + wt (2)

where wt ∼ N(0,Σw) is an m× 1-vector of random distur-
bances in the pricing process, which are uncorrelated over
time. In Figure 2 we have represented the flows of informa-
tion and their inter-relations. We see how the effects of both
disturbances affect the series of product prices.

3.2 How to estimate hedonic prices?
If we consider hedonic prices as a state variable we can solve
the system of (2) and (1) as a state space model and we
solve it through the Kalman filter technique. Using the
expectation-maximization (EM) algorithm or the Newton-
Raphson algorithm we can estimate the unknown series of
hedonic values together with other parameters [25, 18]. Qual-
ity of the estimation may be evaluated by means of residuals.
They should be as small as the model include all the charac-
teristics of a product. Actually, it is difficult to identify all
the characteristic of a product in a design matrix and this
is one of the reason that covariance matrix of measurement
equation is often a larger matrix than the OLS regression
covariance matrix. To choose the exact number of hedonic
variables to be analyzed in the model one may follow dif-
ferent techniques. In some cases it is sufficient to consider
only the most important characteristics of a product, while
in other cases it is good to determine all of them. The prob-
lem, called identifiability or observability, is solved first of
all, assuming the rank of the matrix Φ equal to m and con-
sidering a number of variables that provide small variance-
covariance matrices of disturbances. It is very similar to
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Figure 2: A directed acyclic graph with disturbances
(gray circles). zt is the implicit value for the vector
of components. yt is the series of prices for the fi-
nal products. Circular arrows mean cross relations
between the variables of the vector.

principal component analysis where the researcher chooses
a number of components which explain sufficient variabil-
ity of the data. In the supply chain context the number
of physical component is well known and in the application
we limit to observe only physical components of comput-
ers. Differently, if the researcher wants to include market
characteristics as segmentation or discounts he should test
the algorithm to avoid strange results. In the same time,
we maximize the likelihood of joint distribution of prices
and state variables via the expectation-maximization tech-
nique [31]. Differently from the previous work, the online
version of the algorithm has a stopping rule based on the
nearness of the parameters in two adjacent iterations, but a
maximum number of iterations. We limit the number of it-
erations to allow short time of computation. The input data
of algorithm are the multiple series of prices yt in an inter-
val (0, T ), the design matrix D, and the initial values of the
multi parameter Φ,Σv,Σw, µ0,Σ0. Here µ0,Σ0 represents
the initial distribution parameters of hedonic state variable.
After less than few seconds, output provides an estimated
implicit series of the same length than product prices, and
an estimate of multi parameter in the same interval. All
those values represent an important instrument of market
analysis in hedonic sense. Furthermore, they measure how
our design matrix reflects the actual market structure. Per-
formances of the algorithm are quasi optimal, overall under
the aspect of the time of response. We will see in the ap-
plication how sometimes the output parameters are not so
reliable in terms of precision due on the short time of es-
timation. In some situations, there are other determinants
for the prices different from the component evaluations. In
these cases hidden Markov models could fill the lack of he-
donic model computing for example switching regime pa-
rameters or time varying parameters. When the number of
iterations for estimation of hedonic prices should be greater
than the threshold we set, the output could be not precise.
Our work wants to explore the effects of this approximations
on the forecast performances.

3.3 Forecast models based simply on individ-
ual product series

The first test model is a univariate autoregressive model,
AR(p), with p lag-parameter dependent on the number of

periods shows high partial autocorrelation1. Since our data
does not display long memory property we omitted a long
moving average component, typical of moving averages mod-
els (MA). Autoregressive model is based on the following
relation:

yi,t = β0,i +β1,iyi,t−1 +β2,iyi,t−2 + · · ·+βp,iyi,t−p +εi,t (3)

for t = 1, . . . , T , where T is the last value known in the series
and i = 1, . . . , n is the index for each type of product. We
assume εi,t ∼ NID(0, σε,i

2), or E[εi,t] = 0 and E[εi,t
2] =

σε,i
2 for each i = 1, . . . , n. The estimation method is the

OLS technique without restriction. Output to validate the
model includes some statistics like t-value and significance
level, the residual squared sum (RSS) and the log-likelihood.
To simulate the agent online application of the model, we
may compute forecast performances for many windows and
for each of them we will measure performances. Forecasts of
AR(p) are computed in dynamic way, using the last values
known to estimate the future ones by the relation:

ŷi,t+h = β̂h
1,iyi,t + · · ·+ β̂h

p,iyi,t−p, h = 1, . . . , H. (4)

Since an agent must predict short-medium future behavior
of prices a value of H = 40 is convenient. In fact, our agent
goal is to update the model day after day receiving informa-
tion about product prices for customers, and use dynamic
information for future investment in the procurement mar-
ket for production planning. A value of forty days must be
ideal to test also medium-long strategy for an agent.

3.4 Forecast models based on multiple series
Vector autoregressive models (VAR) take into account the
co-movements among a set of variables. Each variable is
regressed against its own value and all the other variables
in the model for p periods back (VAR(p)). Differently from
the previous model, VAR requires a lot of parameters2 to
estimate the coefficients and this is the greater disadvantage.
We opted for the simplest VAR(1) to measure performance
of multivariate models. Our unrestricted reduced form of
the system is:

yt = Πyt−1 + ut, for t = 1, . . . , T, (5)

where Π is the n×n matrix of coefficients constant over time
and ut ∼ N(0,Σu). Note that Σu is constant over time and
it means that OLS estimation coincides with maximum like-
lihood estimation (MLE). A typical output of VAR regres-
sion provides the estimates of the coefficients of Π and their
standard errors. A t-value and a p-value tells us whether
individual coefficients are significantly different from zero
(null hypothesis). The square root of the residual variance,
the sum of diagonal entries of Σu, can be used to measure
how the model fit the multivariate series. Although, to vali-
date the model we used the coefficient of determination R2.
It represents the proportion of variation in the dependent
variable that has been explained or accounted for by the re-
gression model and can be used to measure how the model

1This choice is based on the analysis of partial autocorrela-
tion functions (PACF). For example, if every product has a
PACF graph shows high values (0.3-0.5) for the first three
lags we can opt for p = 3.
2For instance, a VAR(1) of 16 equations requires 256 param-
eters as a VAR(3) for the same number of variables requires
768 of them. This is the reason why Akaike information is
very important in multivariate models.



fits the multivariate series. Values of R2 < 0.25, which cor-
responds to an R < 0.5, would never be acceptable.
Unfortunately, VAR models are not always adequate de-
scription of real series [17]. In our case we are assuming
that every product price depend on the other ones but it
may be not the case. Why an agent should be consider an
increasing of price for a product if the price of another one
increases or decreases? Furthermore, there is the risk that
multivariate assumption is not satisfied for co-integration.
This problem often invalidates the model assumption and
it forces the researcher to find a more adequate formulation
of the interrelationship among the variables. Obviously, all
these defects affect the forecast performances and in sev-
eral cases multivariate models behave worse than univariate
models. Finally, we arrived to understand the importance
of DHMM model as alternative to VAR model: if we use
DHMM we avoid a co-integration analysis of product series,
that is may be very troublesome in some cases.
Following the methodology in univariate case, we analyze
VAR performances in four non-overlapping groups of esti-
mation windows: the initial period, which collects the esti-
mation windows 30, 35, 40, . . . 65, the initial-middle period
(70, 75, . . . , 95), the middle-final period (100, 105, . . . , 135),
the final period (140, . . . , 170). For all the estimation win-
dows we compute the ahead predictions for the next H = 40
days.

3.5 Autoregressive forecast multiple models in-
cluding hedonic values

Now, we describe a multiple model that takes into account
the hedonics prices for the individual components one at a
time. We start from a univariate model to which we will in-
clude hedonic information. The interpretation of this model
is given by the following assumption: in certain periods a
component affects the prices more than expected value. In
DHMM product prices changes are only induced by hedonic
vector of evaluations. We weak this assumption assuming
that there exists a link with historical prices. The advan-
tages of our new model are:

• it considers the co-dependencies between product price
and the hedonic evaluation of a component included in
one of the product;

• it simplifies the multivariate DHMM reducing the num-
ber of variables;

• it avoids the assumption about false interrelations amon-
gst the product prices as in multivariate case.

As in the case of DHMM, our model is more attractive if and
only if the hedonics evaluation are estimated via an optimal
design matrix, and in online version it may suffer of short
time of computations. We assume that our prices depend
on past values but also hedonics values such that:

y
(j)
i,t = β

(j)
0,i +β

(j)
1,i yi,t−1 + · · ·+β

(j)
p,i yi,t−p +α

(j)
i ẑjt + ε

(j)
i,t , (6)

for t = 1, . . . , T and j = 1, . . . , m,. Here, (ẑ1t, . . . , ẑmt)
t = ẑt

are the estimates of hedonic prices for components defined
in (1). Differently from simple autoregressive model, the
model in (6) includes the hedonics evaluations for compo-
nents assembled into the product. For this reason, we call it

Figure 3: Our hedonic models spans from univari-
ate and multivariate autoregressive models to test
different hypothesis of co-dependencies.

multiple autoregressive model, MAR(p). Theoretically, via
the equations given in (6) we state there is a link between
the prices and the hedonic evaluations of characteristics of
products established in (1). One time, an agent estimates
the ẑt vector value he can plug it into one of the m fore-
cast model to improve performances. There exist m (one
for each component) MAR(p) models, that we indicate by
MAR(p)j , with j = 1, . . . , m. In this way we can have a
multiple estimation of the product value considering a dif-
ferent components history and hence, the complete picture
of future developments. Obviously, we must choose a crite-
ria to select the most reliable between the m + 1 univariate
models, the VAR model, and the DHMM model to predict
the actual price of one product. In Figure 3, we represented
the space of forecast models limited by basic standard mod-
els where our hedonic models are positioned. In that space,
many researchers have already tested other models including
latent, factors, and principal component models [28, 9]. Fi-
nally, in the next section we list some indicators of forecast
performances for all the models we examined in the previous
subsections.

3.6 Forecast performance indexes
To validate forecasts we used four indexes:

• the one day ahead relative absolute error (ODAE), the
error of the model returned the next day when we found
the actual price. It is good that ODAE do not exceed a
fixed value selected by the agent otherwise it means that
our model fails. To allow comparisons between different
products we normalize them using the nominal product
price. We define the index such that:

ODAE(i, t + 1) =
|yi,t+1 − ŷi,t+1|

npi

, (7)

for i = 1, . . . , n and t = 1, . . . , T,. Here the values npi are
the product nominal prices obtained by a sum of nominal
component costs and assembly cost as in:

npi = AssCosti +

numParts∑
i=1

NomPartCosti,j , (8)

where NomPartCosti,j is the nominal cost of the j-th
part for good i, numParts is the number of parts needed



to make the good i, and AssCosti is the cost of manufac-
turing the good i. A nominal component cost is defined
as the reference price for an individual component known
from each agent at the beginning of the game. They are
necessary because in this way, we can compare perfor-
mances for different products in the supply chain. Rea-
sonable values for ODAE in applications will depend on
the largeness of the estimation window of the model. The
longer is the series of prices the effective is the perfor-
mances of the model;

• the root mean squared error computed over the h periods:

RMSE(i, h) =

[
1

h

h∑
t=1

(yi,t − ŷi,t)
2

]1/2

, (9)

for i = 1, . . . , n, h = 1, . . . , H, and H = 40. It gives an
idea of performance in the interval of h days:

• the root mean squared positive errors, given by:

RMSE+(i, h) =

[
1

h

h∑
t=1

[
(yi,t − ŷi,t)

+]2
]1/2

, (10)

where (x)+ = max(0, x), and the root mean squared neg-
ative errors, given by:

RMSE−(i, h) =

[
1

h

h∑
t=1

[(yi,t − ŷi,t)
−]2

]1/2

, (11)

where (x)− = max(0,−x). In this way, we observe RMSE+

(RMSE−) to emphasize the errors inducing agent in un-
derestimation (overestimation) of the product price. In
fact, the positive (negative) error may compromise the
successful of future negotiations.

To determine the accuracy of the model in more experiments
we can average across days and simulations the RMSE, the
RMSE+, and the RMSE−. Since we want an index mea-
suring performance considering all the products, we opt for
normalized prices and an average RMSE such that:

RMSEA(h) =

√√√√√
∑n

i=1

∑NG
g=1

∑S
s=1

[
1
h

∑h
t=1

(y
g,s
i,t −ŷ

g,s
i,t )2

npi

]

NG · n · S ,

(12)
where g is the index for the simulation, NG is the total num-
ber of simulations, s indicates the length of the time series
in periods (s is the time window used for the estimation of
the coefficients of the model), and S is the total number
of estimation windows covered3. Similarly to the previous
paragraph, npi represents the nominal price of the product
with index i ( i = 1, . . . , n). At the same way, we com-
pute RMSE+

A(h) and RMSE−
A (h) as average over games,

products, and different estimation windows. Although, since
RMSEA(h) is an average we must pay attention to un-
dervalued performance results of a model with not so low
RMSEA(h). For instance, if the index for the AR(3) model
is lower than the index of the MAR(3)1 model, we may

3As we said at the end of the subsection 3.4, we split the
time series in four groups of estimation windows. For each
group we compute RMSEA(h) obtaining four index for the
whole series.
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Figure 4: 6 days moving window volatility for PIN-
TEL computer prices in 220 days. The x-axis in-
cludes 220/6 ≈ 36 windows

have in any cases that the latter performed better than the
first one. We will judge a model useful and applicable if
its index show similar results to the best one model for dif-
ferent values of h. Furthermore, we may assign one point
when RMSE(i, h) is larger than the same index for another
model for each i = 1, . . . , n and each h = 1, . . . , H. Collect-
ing all the points we obtain a new index. It measures the
relative efficacy of a model and hence the proximity of the
same to another model in a period of s estimation windows.
We define a score function:

Q mdl1
mdl2

=

S∑
s=1

n∑
i=1

NG∑
g=1

H∑

h=1

I

(
RMSE(i, h)g,mdl1

RMSE(i, h)g,mdl2

)
, (13)

where mdl1 and mdl2 are two forecast models and the I
function assign one if RSME(i, h) for one model is better
then the RSME(i, h) for another model for the exact day,
product, game, and forecast period. We may consider points
when root mean square error is simply lower than other or
to give points for differences of 5% or 10%. Values of Q give
us a measure of performance over a large number of cases.

4. TESTBED APPLICATION: THE TRAD-
ING AGENT COMPETITION FOR SUP-
PLY CHAIN MANAGEMENT

To analyze results of hedonic framework including multi-
ple forecast models we used data from a multi agent sim-
ulation of a computer market supply chain, TAC SCM. In
this virtual market agent-manufacturer produces 16 types of
computers buying and assembling branded parts for moth-
erboard, CPU, RAM and hard drives. Every component
is produced in two features by each supplier (ten differ-
ent suppliers provides the five components in double ver-
sion). Agents may choose between PINTEL or IMD moth-
erboards, 2Ghz or 5Ghz CPUs, 1Gb or 2Gb RAMs, 300Gb
or 500Gb Hard Drives. Availability of different components
and demand for computers varies randomly through the
game. Data are extracted from an archive and consists of
85 games. We used 5 games for analysis and graphics, 50
games for training of both algorithms and the remaining 30
games for measure the performances. In TAC SCM equa-
tion (1) elements are y, the vector of prices of 16 types of
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Figure 5: Scatterplots for two pairs of computers for
all the days in Game 6.

computers in time t = 1, . . . , T , and T = 220, the matrix D
of dimension 16× 5 given by:

D′ =




1111111111111111
0000000011111111
0000111100001111
0011001100110011
0101010101010101


 , (14)

and the vector of hedonic values of components zt. The num-
ber of characteristics that we examined is m = 5: the base
product (included in each type of computer), the mother-
board differential (between PINTEL and IMD brand), the
CPU differential (between 2 GHz and 5 GHz), the Hard
Drive differential (between 300 GB and 500 GB), and the
RAM differential (between 1 GB and 2 GB). Each row of
matrix D describes a single type of PC based on its physical
components. If a component is included a digit 1 compares
otherwise a 0 appears. We preferred to focus over physical
components because we think they are the most important
computer characteristics take into account from customers
in their shopping. In an explorative analysis, figure 4 shows
a volatility index during all the duration of a game computed
in windows of 6 days. We can see how the initial and final
periods are the more intensive for stochastic movements,
until the values of 60-70%. For this reason, we divided the
tails from the rest of the game in our analysis focus on dif-
ferent parts of the game. To show how is important but at
the same time difficult to consider co-dependencies between
the product prices we have included two examples of scatter
plots in Figure 5. Products sharing four similar components,
like the computers with ID 15 and 16, should be more corre-
lated than PC6 and PC16 that share only three components
over five. Instead they show a minor linear correlation. The
mechanism of multivariate dependencies is usually the rea-
son that pushes the researcher to the choice of a VAR model
but we offer now an alternative instrument based on hedonic
variables.

4.1 Results for standard models
In our univariate characterization, we set p = 3 since the
partial auto-correlation function of the time series showed
high values until this lag. Normally, in time series analy-
sis this function indicates the appropriate lags in an AR(p)
model [4]. We estimated the univariate model, AR(3) for
several windows. In the first days of the game AR(3) model
is not consistent since values are so few to estimate it cor-
rectly. Agent should prefer a simple AR(1) model in that
case. After the first 10 days AR(3) starts to work and its
performances showed robustness and good prediction. All
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Figure 6: Average one day ahead error for different
models except DHMM.

Table 1: Results of AR(3) after 40 days. Indexes in
percentage for 10 games and 16 PC types. ME is the
absolute mean error and SD its standard deviation

IDX 1 2 3 4 5 6 7 8

ODAE 0.54 0.65 1.04 1.08 0.6 0.69 0.81 1.09
ME 2.8 2.67 2.66 3.08 3.85 3.12 3.31 3.72
SD 1.66 1.47 1.83 2.13 2.41 2.17 2.21 2.17
RMSE 3.32 3.08 3.38 3.8 4.6 3.87 4.11 4.42

IDX 9 10 11 12 13 14 15 16
ODAE 0.93 0.56 1.28 0.95 0.51 0.58 0.91 1.06
ME 3.28 2.8 3.77 2.95 2.44 2.37 3.67 2.78
SD 1.57 1.55 1.84 2.06 1.55 1.5 1.72 1.32
RMSE 3.65 3.27 4.28 3.82 2.94 2.92 4.1 3.12

values of t-Student for estimated parameters say that co-
efficients are not null and for this we did not show them.
All the R2 shows an high value around 0.90-0.98. Table 1
lists the performance indexes of AR(3) in one moment of the
game for an ahead period of eights days (H = 8). We see
the full response of the model due on the correctness of the
lag size even though in the initial periods of the year. In
this case, we have a good result also in dynamic forecasting,
with RMSE at maximum at 4.6% of the nominal price. It
means that in the next H = 8 days the root of the mean
squared errors respect on nominal price of the computer is
around 5%. For instance, we can forecast in the day 80 the
price of PC5 for the next eight days, with a nominal cost of
2150, and the error previewed is at maximum 2.65

21.50
≈ 57. In

the same table, we see how the performances can vary from
product to product giving standard deviation of the errors.
Other value of RMSEA, RMSE+

A , and RMSE−
A are given

in Figures 7-11.
The ODAE for the univariate standard model gives optimal
results also in the middle-final periods of the game. In these
periods, it is lower than ODAE for the multivariate models
(see plots in Figure 6). The score function (see Table 3)
between AR(3) and other models shows higher performance
of univariate models in last days of the game. Furthermore,
AR(3) is one of the model to be included also in initial pe-
riods since it gives one time over four better results than
VAR, and two times over three better results than DHMM.
In our application, VAR(1) model behaves so well to be se-
lected the first model in our framework. The disadvantages



Table 2: VAR(1) coefficients. Diagonal entries of
the Π matrix estimated after the first 40 days of 5
games (51-55)

Gm π1 π2 π3 π4 π5 π6 π7 π8

51 0.42 0.72 0.88 1 0.12 0.57 0.83 0.28
52 0.78 0.14 0.66 0.59 1.01 0.15 0.51 0.54
53 0.63 0.42 1.04 -0.08 0.56 1.28 0.3 0.43
54 0.05 0.19 0.3 0.61 0.44 0.57 0.56 0.78
55 0.56 0.1 0.08 1.08 0.9 0.25 0.53 0.41
Gm π9 π10 π11 π12 π13 π14 π15 π16
51 0.48 0.4 0.28 0.23 0.4 0.27 0.29 0.48
52 0.6 0.33 0.42 0.64 0.4 0.77 0.17 0.51
53 0.86 0.56 0.44 0.26 0.33 -0.08 -0.62 1.65
54 0.35 0.19 0.98 0.5 0.93 0.45 0.56 0.16
55 -0.17 0.21 1.06 0.84 0.5 1 0.3 0.54

are the complex lecture of the dynamic multipliers of matrix
Π and the weakness at the end period of the games. Table
2 gives an idea of the variability of coefficient estimations
when there are 16 independent variables. Table 2 reports
the diagonal values in the matrix Π that should be lay in a
ball of the unit value. In our application actual prices are
not stationary and those values show often not stability. Al-
though, the mathematical model has good performances in
prediction overall when the game is almost stable. Probably,
if one apply restrictions on Π could provide a clearer picture
of the meaning of the coefficients than without restrictions.
The one day ahead error for VAR is increasing after the 140
days (see Figure 6). This is due on the anomalous behavior
of the agents that tend to empty their warehouses and price
the products without consider its mean historical value and
usual co-dependencies. The RMSE shows how multivariate
models performs optimally in the initial and middle periods.
But we should not use only VAR model to predict prices in
that period. In fact, the score function (see Table 3) be-
tween VAR and other models shows many times (20% for
HM and 25% for AR) it is better to use the latter.

4.2 Results for models including hedonic val-
ues

To estimate hedonics values we used the online version of
the algorithm DHMM (see [31] for details). It provides also
an estimate of the transition matrix, Φ, the covariance ma-
trices, Σv and Σw, and of initial distribution of hedonics
prices, z0 and Σ0. We show forecast results for DHMM
and the five models, MAR(3)1, . . . , MAR(3)5, under the as-
sumption that future developments of components valuation
follow the estimated transition matrix Φ. In standard mod-
els future forecasting valuation of computer prices tends to-
ward a stabilization due on the mean reverting effect. Thus,
our agent could fall in the error to bet in a future stable
distribution of product prices. Differently, the hedonic fore-
casting values follow a different mean reverting effect given
by (2).
In Figure 6 we omitted the values for the DHMM since it
provides not good performances in the first period of fore-
cast. This is an effect of the scarce performances in some
games due on the short time of computations. The same
defects are not so evident if we consider one of the simplest
models MAR(3)j . Until the half of the game VAR model
is the best model in sense of ODAE. Differently, after this
period hedonic models and AR start to give optimal predic-
tions. Figure 7 shows performance results for all models in

Table 3: Points for Q in each period of forecast. Pts
0 if RMSE(i, h) is lower for the first model respect
than second model. Pts α if RMSE(i, h) is lower of
α for the first model respect than second one

Prd HM/AR HM/VAR AR/VAR
Pts Pts Pts Pts Pts Pts Pts
0 5h 10% 0 5h 10% 0

1-25 0.43 0.14 0.09 0.19 0.01 0.00 0.26
30-65 0.35 0.14 0.08 0.16 0.01 0.00 0.29
70-95 0.36 0.13 0.08 0.16 0.01 0.00 0.30

100-135 0.39 0.13 0.07 0.20 0.01 0.00 0.32
140-170 0.35 0.11 0.06 0.40 0.13 0.09 0.53
175-200 0.33 0.07 0.03 0.47 0.18 0.23 0.67

Prd AR/HM VAR/HM VAR/AR
Pts Pts Pts Pts Pts Pts Pts
0 10% 50% 0 10% 50% 0

1-25 0.57 0.13 0.05 0.81 0.17 0.06 0.74
30-65 0.65 0.24 0.09 0.84 0.29 0.10 0.71
70-95 0.64 0.19 0.04 0.84 0.24 0.04 0.70

100-135 0.61 0.12 0.02 0.80 0.15 0.02 0.68
140-170 0.65 0.14 0.02 0.60 0.09 0.01 0.47
175-200 0.67 0.13 0.01 0.53 0.06 0.00 0.33

four groups of forecast windows compared to the other mod-
els, using the index RMSEA(h) as in (12). We tested the
models across time series of length 30, 35, . . . , 60, 65 in the
first graph (initial period), 70, 75, . . . , 95 in the second graph
(initial-middle period), 100, 105, . . . , 135 in the third graph
(middle-final period), 140, 145, . . . , 170 in the fourth graph
(final period). We see how VAR(1) performances are almost
always the best ones. Our hedonic model has a strangely
behavior during the first ahead days of forecast since its es-
timates some times are not sharp. Although, the same val-
ues are quite similar for AR(3) and MAR(3)m. It confirms
the hypothesis of good performances of bivariate models not
so different respect than multivariate ones. Hedonics infor-
mation may improve the forecasts in several situations as
in the middle-final days of the game. Both bivariate and
multivariate hedonic models improve forecasts around the
1-2% respect than standard autoregressive models, corre-
sponding in an average absolute value difference of 20-50
per unit produced. Hence, a simple inclusion of hedonic in-
formation may improve the forecast price agent framework.
We see how all models improve with the increasing time se-
ries length. After 150 days performances are quite similar
except first days forecast of multivariate models. Our agent
should prefer to use a different model depending on the pe-
riod of the game and on the ahead days of forecasts. Thus,
our hedonic multivariate model performs very well in certain
games and periods and it is better then VAR(1) in the last
days of the game. Failures of the model are due on the short
time of computations in online conditions, the larger num-
ber of parameters to be estimated than other models and on
the non-observability of hedonic variables. The larger the
number of variables is in the model the larger probability to
have forecast errors.
In Table 3, points obtained from DHMM are compared to
AR and VAR scores. The good performances of hedonic
model, when algorithm achieves to estimate perfectly the
component implicit price behaviour, pass from 16% to 47%
in the last periods. What can we say about symmetrical
property of our forecasts? In Figure 8 we see some differ-
ences in performance that convince us to build a framework
considering all the models. For instance, AR in the first pe-
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Figure 7: RMSEA(h) in four group of windows. From
up to bottom: (1) initial period 30-65 days; (2)
initial-middle period 70-95 days;(3) middle-final pe-
riod 100-135 days; (4) final period 140-170 days

riods tends to overestimate prices. Differently, multivariate
models in the last periods tends to underestimate prices.
How agent can weight the multiple forecast information to
point in the right direction to prediction of prices? Our
framework includes multiple indicators of market trend that
could substitute the standard autoregressive estimators. The
latter in non stationary markets suffer from the defect of the
reversion to the mean.

5. CONCLUSIONS AND FUTURE WORK
We designed and implemented our multivariate hedonic al-
gorithm for online forecasting in a dynamic heterogenous
market. Furthermore, we developed a method for compara-
tive performance assessment of various univariate and mul-
tivariate forecast methods. Our multivariate methodology
describes and compares a set of instruments that an agent
may implement in electronic markets for dynamic pricing.
Multivariate analysis is surely an advantage in this context.
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Figure 8: RMSE+
A and RMSE−

A in three groups of
windows. From up to bottom: (1)-(2) initial period
30-65 days; (3)-(4) middle-final period 100-135 days;
(5)-(6) final period 140-170 days.



Then, we found that hedonic model may fill the gap of stan-
dard multivariate errors over all in specific intervals. In fact,
including hedonic models, an agent can examine a multiple
choice of predictions about future prices based on compo-
nents and historical product prices. Robustness of AR and
VAR models together with the correct performances of he-
donic models can improve a forecast multiple framework.
This is one way to use hedonic information. In our future
research, we want to test connections between procurement
prices and hedonic prices. In such circumstance, hedonic
values can be used also as a predictor of unobservable com-
ponent prices. So, we can consider them as predictors of
both supply chain market prices.
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